
Slab 1 (A slab is similar to what most think of as a "node", except that you may have multiple slabs corresponding to different processor cores, or different services, for instance)

Transaction 1

R1.2 (New Memo)
Record1 – Set Color=Blue

X1 - Root Node for Index 1 X2 - Node for Index 1 X3 - Leaf Node for Index 1

Assumes fixed 3-tier unbalanced index tree with 1024 per slots each node (1024^3 = 1 Billion records)
Would likely be a 4-tier system. Balanced-tree indexing work may be possible, but is not presently included in this design

X1.1 (Existing Memo)
Create Index node X1 (various links)

X2.1 (Existing Memo)
Create Index node X2 (various links)

Projection based on known
memos

X3.1 (Existing Memo)
Create Leaf node X3 (various links)

Traverse main index to find
relevant leaf node
Issue a new memo for leaf
node, add to context

X3.2 (New Memo)
Update Index node X3 to include ref
to new head of Record R1 (R1.2)

Link Link

R1.1 (Existing Memo)
Create Subject R1 – Color=Red

Causal Context for Slab 1
(contains references to objects in the slab)

T1.1 (New Memo)
Begin Transaction T1

X3.2 (New Memo)
Update Index node X3 to point to new
head of Record R1 (R1.2)

Descends

X3.2 (New Memo)
Update Index node X3 to point to new
head of Record R1 (R1.2)

X1.1 (Existing Memo)
Create Index node X1 (various links)

Slab behaviors:
• Store "memos" (in RAM or otherwise)
• Has specific storage/network/compute quotas (MB/GB/TB+)
• Track peering data with memo replicas (gossip, not all replicas)
• Report approx. expected lifetime (seconds~months+) to peers
• Calculate a "durability score" for all memos
• Push replicas of memos below durability-threshold to peers
• Send heartbeat packets to peer slabs
• Recalculate replication factor reduction for stale peers
• Accepts memo replicas from peers when below quotas
• Evicts LRU memos when network/storage quotas are exceeded
• Update peer slabs for memos leaving/entering

Subjects/Memos
• A subject is simply an enumeration, and exists only as a
coalescence of it's projected memos
• Memos are immutable, originated by a slab
• The "HEAD" of a given subject consists of the most causally
recent memos, which no other memos are yet known to descend.

Notes:
Term for memos that share the same topic which are non-identical
Explain replica peering vs referential peering

Memo (immutable msg)
Differences to ancestor memos

Action

T1.1 (New Memo)
Commit Transaction T1

X1.1 (Existing Memo)
Create Index node X1 (various links)

All Slabs must initialize with at
least one memo from the root
index node. It needn't be fresh

Last known "head" of Record R1
Gotten from previous transaction
or pushed by a peer slab for
durability assurance

X2.1 (Existing Memo)
Create Index node X2 (various links)

X3.1 (Existing Memo)
Create Leaf node X3 (various links)

Upon traversal/retrieval, copies
of the index memos, and any
other retrieved memos are
stored at least momentarily.

TODO:
1. review how index node memos are to be selectively
acknowledged in order to keep traffic manageable.(Maybe
merge lazily only on the basis of context swaps?)
2. show how keyframes are generated
3. show how projection works

Q: how do i serialize a causal context for api users?
A: broadcast memo hunt OR memo index

Q: how do I determine when to share causal context? (or
otherwise how do I control merging such that its layered

Compaction
When context grows too large. May happen
mid-transaction.

X2.2 (New Memo)
Update Index node X2 to link to new
head of Index Node X3 (X3.2)

X1.2 (New Memo)
Update Root Index node X1 to link to
new head of Index Node X2 (X2.2)

X1.2 (New Memo)
Update Index node X1 to link to new
head of Index Node X2 (X2.2)

X2.2 (New Memo)
Update Index node X2 to link to new
head of Index Node X3 (X3.2)

X1.2 (New Memo)
Update Index node X1 to link to new
head of Index Node X2 (X2.2)

Link Link

DescendsDescends

Replace context with latest head of
root index node, plus any
descendents of non-root nodes
which are not referenced by same.

Create new parent index memos
linking to child index memos from
the causal context.

NOTES:
* Memos reference beacons
* index keyframes associate beacon vector to each slot
* All keyframes associate beacon vector to the overall frame
(consider compression schemes inside each keyframe?)
* Beacons never get handed off, they're born, and they die
* Beacons are selected by their longevity, consistency, and
conformance to the target interval
* All memo propagation can be vicarious via plumtree
* keyframes are merged commutatively by comparing
beacon vectors for each slot
* each slab may be a beacon
* beacons which are unpopular will tend to self-terminate
* beacons which are popular will tend to persist
* each slab's probability of activating its beacon function is
inversely proportionate to the health of it's beacon set
* does plum tree allow for popularity estimation?

